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Abstract. Applying the approach of modelling physical quantities in terms of measurable maps
to the phase of a light field, we distinguish a multiple-valued phase from its representation on
the unit circle and the single-valued phases in the case of one random phase variable. We study
two multiple-valued random phase variables, whose multiple value forms a displaced lattice,
and we compare them with their representation on the torus. We relate the phase expectations
and variances to single-valued phases, whereas we associate the preferred phase and the phase
dispersion with the representation on the circle. We propose alternatives for the covariance
of two single-valued random phase variables. Starting from the concept of a characteristic
sequence, we introduce the phase characteristics of higher order. As an application to quantum
optics, we reformulate the study of phase properties of the states of one- and two-mode light
fields.

1. Introduction

The term phase in physics is associated with different meanings; let us compare the physics
of phase transitions, the phase space description (representation), and the phase of a process.
Classical and quantum theories of a harmonic oscillator and its random phase variable or
phase operator are closest to the third notion of phase. In some situations lying beyond the
scope of our paper, phases of the Moon are interesting. Speaking of the phases or changes
of the Moon, one considers four values of the phase: the New Moon, the First Quarter, the
Full Moon, and the Last Quarter.

In the case of the classical harmonic oscillator we can imagine four states of motion,
which remind us so much of the phases of the Moon: (i) the oscillating particle at the
origin moving to the left; (ii) the left-most position at rest; (iii) the particle at the origin
moving to the right; (iv) the right-most position at rest. If we represent the states of
motion in the phase space of the harmonic oscillator, the law of energy conservation can
be illustrated as the fact that the phase space point moves on a circle and that only a
polar angle develops. So the polar angle suffices to describe the phase of motion. It is
convenient to represent the phase in the phase space because the position coordinate or
deviation of an oscillating particle defines the phase uniquely only at the turning points.
Elsewhere, the phase must be made unambiguous regarding the direction of the motion.
In optics the complex amplitude of the field belongs to Gauss’ plane and if the energy of
the monochromatic light field is conserved, the complex amplitude of the field undergoes
circular motion just as the classical harmonic oscillator describes. This deep analogue led
to the second quantization of electromagnetic fields in terms of a collection of quantum
harmonic oscillators. Because in quantum optics the complex amplitude of a Glauber
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coherent state belongs to a kind of phase space [1-4], the coherent state techniqgue came
into being and the use of quasidistributions provided evidence of the possibility of a quantum
phase. Nevertheless, (quasi)distributions of the quantum phase were not in focus. On the
contrary, the cosine- and sine-of-phase operators were considered as the only solution to
the quantum phase problem, which indicated simultaneously that similarly built Hermitian
harmonic-oscillator phase operators could not be accepted [5, 6]. An advantage of the phase
cosine and sine operators is their intimate connection with the phase exponential operators,
which act as shift operators on the Fock state representation. Using the cyclic property of
shift operators available upon one’s restriction to the Hilbert space vectors yielding photon-
number distributions of finite variation, we obtain a well behaved Hermitian optical mode
phase operator [7]. An immense effort devoted to the quantum phase has been reflected in
a special issue oPhysica Scripta[8]. A thorough discussion of classical, semiclassical,
and quantum properties of the phase has been published recently [9].

Even classically the difference between the phase variable and the angle observable is
primarily the difference between their conjugate observables. This difference deepens when
guantum theory succeeds. In contrast, on neglecting the conjugate variable, there is no
difference between the angle and the phase. In this paper we distinguish a multiple-valued
random phase variable from single-valued random phase variables and reveal their role in
a statistical study and show that this problem becomes more serious when correlation (the
statistical dependence between two random phase variables) is interesting. Secondly, we
continue with the study of quantum optical models. Similarly, two sections follow, one
dealing with one random phase variable and with a pair of random phase variables under
the assumption that they are statistically independent, and the other devoted to a study of
correlation or statistical dependence between phases. Recognizing the analysis of quantum
phase properties of pairs of electromagnetic field modes [10], we approach a study of the
parametric down-conversion and we demonstrate ideas and problems connected with the
optical phase correlations. We express our orientation to the discussion of other problems
related to the phase clearly in section 2, where we combine the examples of classical and
guantum distributions and we borrow examples of distributions of quantum origin from the
recent discussion [11,12].

2. One random phase variable and two independent random phase variables

2.1. Theory

The multiple-valued property of phase is obvious. Phase is the polar angle in the phase plane
and as such it shares the multivaluedness with the polar angle. To be more definite, let us
consider the situation in the descriptive statistics of an experiment, when the measured angle
@ in each trial is recorded like a sequence of points on the real line such that the spacing
between any two consecutive points i8,2 = {¢o + 2k; k € Z}, wheregg € [0, 27) and
Z is the set of all integers. After many trials the real line is filled up with records and the
distribution may be described by a measure of subsets of the real line. To construct an ideal
model of this situation, we note that it is useful to restrict ourselves to subsets, which are,
in a sense, 2-periodic. Paying due attention to the measurable sp&cé#), whereR is
the set of real numbers afl= B(R) is theo-field of all Borel subsets of the real line, we
introduce the collection of all2-periodic Borel setB,, = {B € B, B = B + 2x}. This
collection is also a-field.

To define the multiple-valued random phase variable, we modify the definition of an
ordinary single-valued random variable [13,14]. This modification does not affect the
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measurable spac&?, F), where Q is the set of elementary random events ahds a
o-field of random events. The measurable spgeeF) is changed to a probability space
(2, F, Prob by considering Prob, a probability measure Bn

The most striking modification is the multivaluedness of a random phase vadgahle
whose domain i€2 and the codomain i® although this property reduces to a declared
equivalence between the propositiong:= ®myit(w) With gg € R, w € 2, andgo+ 2k =
®mur(w) with k € Z. For anyB € By, we defined,.l (B) = {w € Q; ®mur(w) € B}. Let
us note that the proper®mnu(w) € B is not contradictory in spite of the multivaluedness,
because oB = B + 2. We require thatb . .(B) € F for all B € B,,. Then an image of
the probability measure on the Boreffield is defined such that,, (B) = Prob(®,5(B)).

It may happen, although this is rather a non-constructivist approach, that the image of the
probability measure is the Dirac measuge such thats,,(B) = 1 for B 3 0, §2,(B) =0
otherwise.

Now we leave out the proof of a possibility to extend in a standard way the ‘lengths’
of the set9, R, and the sets of the forth= (a, b) + 27 Z, wherea < b, b—a < 2r. The
lengths are as followsv,, () = 0, vo, (R) = 27, vo, (I) = b — a. If the distribution o,
is absolutely continuous with respect to the Lebesgue measurehe Radon—Nikodym
theorem holds and there exists a probability density) such that

2 (B) = / P(g)dva(p) B € Ba. (2.1)
B

As a consequence of this procedure, the probability density ip&iodic,
P(p+ 21) = P(p) ¢ eR. (2.2)

It is a rather different situation from the descriptive statistics of position coordinatdere
one trial provides one recorded point on theaxis and where the obtained densiyx)
can be normalized,

/OO PO)dy =1 (2.3)

oo
a contradiction with the property (2.2). Let us consider the formal changes related to the
assumption that the phase takes on values in the quotieriR/&2tZ, sop € R/2rnZ
(they are equivalence classes). Evemyf@eriodic function can be treated as defined on this
guotient set, first of all cag, sing, with such an argument instead @fe R and also the
probability densityP (@) can be treated witlp € R/27xZ. We will omit the bar overp
in the following. Of course, the equivalence clasgeare residue or congruence classes
modulo 2r in this case. The mathematical theory of probability is not too favourable in
this respect, because its random variables are measurable mappings of fheofell
elementary random events infa For examplex = X (w), where the elementary random
eventw € Q. The multivaluedness of phase means a recession from the usual concepts of
this theory [15]. Anyway, the random phase variafflév) is rather a measurable mapping
of Q intoR/2xZ. In general, 2 -periodic Borel subsets @& will be treated as Borel subsets
of R/2nZ. In this case, there exists a one-to-one correspondence between the measures

w2 and the measurgs on the Borelo-field B(R/2nZ). The Dirac measuré is defined
so that§(B) = 1 for B > 2nZ, §(B) = 0 otherwise. It is illustrative that in this sense the
Lebesque measune, becomes the Lebesque measuren B(R/2xZ). The exponential
function exggig) = cose + i Sing can be treated as defined fore R/27x7Z, so we may
define a pair of random variablé§(w), Y (w) by the equation

X (w) + 1Y (w) = exp[id (w)] w € Q. (2.4)



4668 A Luks and V Pehova

With ¢ € R/2nZ, the function exfig) is an injection (a one-to-one function) into
R2. Its range is the unit circles. Generally, the random vector takes on the values
(X (w),Y(w)) € R?, w € Q. Like this, the theory of probability can be applied again.
The measures,, and$ are replaced by the Dirac formal densityx — 1)§(y). Let us
remark that the replacement df(w) in (2.4) with Z(w), a usual random variable, is to
be interpreted as wrapping a distribution on a straight line around the unit circle. This
wrapping is a reasonable way of conserving the Gaussian distribution for the purpose of
the phase. Nevertheless, two random variables sometimes seem to be too many and the
circle is mapped into the real line using polar angles in an inte@gb§ + 2r), where
6o is a reference phase. The composite mappin® ofa R/27Z via S, onto the interval
[60, B0+ 27) can be plotted as a ratchet-like eriodic function. Conversely, the foregoing
statement foby = —x can be interpreted as a decomposition of the graph presented in [5].
The emerging single-valued random phase variabjg(w) = Arg, {exp[i®(w)]}, where
Argg,z = Im(Lng,z) € [6o, 6o + 27), must have a reference phase. This mapping is by no
means unique, in fact, any choice@fis valid and acceptable, but a choice must be made,
e.g., ofdp = —m or 6y = 0. Here Ln,z is the single-valued branch of the natural logarithm
defined in the whole complex plane except the ray |z| exp(ifp) and continued so that
on this ray L,z = lim,_,, Lng,z") for z’ such that R&'z*) > 0, Im(z’z*) > 0 hold. The
continued example of the Dirac functions is not appropriate here and will be treated below.
In the following we will mention also the distributions on the circle [15].

Of course, the above situation of descriptive statistics could have been so approached at
once, i.e. with a preselected intervéy.[0p+ 2), but with respect to the elusive uniqueness
of this interval we have started differently. Assuming that the random phase vatigiole)
has a probability densitys,(¢), we observe thaPy,(¢) = 0 for ¢ outside the interval
[60, 60 + 27). The Zr-periodic continuation of this density fron®q, 6o + 27) onto the
whole R can be held for the normalized probability densityy) defined above. So we
may complete that situation with the normalizations

Oo+21
/ P(p)dp =1 0o € R. (2.5)
fo
Vice versa we observe thaP,, (¢) = P(p) for ¢ € [6p, 0 + 27).

It is easy to see that in the study of the phase all information on the phase distribution
is contained in a characteristic sequence. This concept is defined by us as

x(s) = (exp(isd)) s €Z. (2.6)

Particularly, x (0) = 1. Assuming the probability densiti (¢) and choosingy € R, we
can express the characteristic sequence as

Oo+21
x(s) = / explisp) P(p) dp s €Z. (2.7)
0o
At each point, where this density is continuous,
1 & .
P@) = S:Z_joo exp(—isp) x (s)- (2.8)

More generally, we denote by Prab) the probability of a random everf C F. From
the circle topology it is known that an open circular accs determined by its endpoints
6’, 6" and by some interior poirt. This arc is given by the equation [16]

sgnh(p, 6',0") = sgnh(9,6’,6") (2.9)
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where
h(g,0',0") = [sin@® — ¢) + sin(p — 6”) + sin©" — 6. (2.10)

For an arbitrary Borel seE contained in the unit circles!, E € B(S'), we define its
measure

w(E) = Prob({w; exp[i®(w)] € E}). (2.12)
Assumingu({60'}) = n({6”}) = 0, we obtain a generalization of (2.8)

W(A) 1 & , .

& = s;oo Re{exp(—isO) x (s)}sincfsv(A)] (2.12)

wheref € A, 6 = %(9’ + 6”) modulo 2r, and, on choosing the numbet§ 6” to satisfy
the inequalitie® — 7 <0’ <6 +m,0 — < 60" < 6+ 7, we obtain that the length of the
arc A [16],

v(A) = 10" - 0| (2.13)
The function sina in (2.12) is defined as
) Sinx/2) forx #0
sincx = x/2 (2.14)
1 forx = 0.

The formula (2.12) can be written equivalently in the form

AV T XS: exp(—is0) x (s)SinCsv(A)] (2.15)
V(D) 21 s=oo A, X ' '

Studying an ordinary random variable, we may use the ordinary characteristic function

Xoo(8) = (exp(isPg,)) s €R. (2.16)
It is connected to the characteristic sequence by the interpolation formula
Xeo() = Y x(s")expli(s — s")(6o + m)]sinc[2r (s — 5)]. (2.17)

Vice versa the characteristic sequence is a restriction of any characteristic functidn to
X ($) = Xoo(5) s € Z. (2.18)

Let us recall that the moments dfy, can be derived from the characteristic function,
especially the mean

1d
(Pgy) = T&X"O(S) L (2.19)
and the second moment
d2
2
(@g,) = —@XQO(S) s (2.20)
leading to the variance
var(®g,) = ((APg,)?) (2.21)

where
ADg, = Py, — (@00) (222)
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so that
var(®g) = (05 ) — (Pg,)°. (2.23)

In particular, for the Dirac measures,,, &, §(x — 1S8(y) on (R, Byy,),
(R/2rZ, B(R/27 7)), (R?, B(R?)), respectively, we obtain
0o

(D) = 21 [ZJ (2.24)

where[x] means the least integer greater than or equal to

Given the random variabl@ which assumes the values in the quotient RgRrZ,
it is obvious that the random variabkeb, k € Z, takes on the values in the quotient set
R/2rkZ. Using the natural surjection &/27kZ ontoR/2n7Z, we get a random variable
®®_ According to the definition of the characteristic sequence (2.7) and observing that the
random variabled® has the density

12 21
PPy == "Plo—"j 2.25
()= ; <<p . J) (2.25)
we obtain that

x®(s) = x(ks) s € 7. (2.26)

Using the characteristic sequence, we need a modification of the formula (2.19) for the
mean. Wheny (1) # 0, we define the preferred phase

Pref, ® = Arg, [x (D] (2.27)
Recalling the multivaluedness from the analytic function theory, we obtain

pref® = arg[x (1)] (2.28)
with argz = Im(Inz). For the Dirac measures, we have

Pref, ® =27 (;ﬂ (2.29)

but generally the characteristics (2.27) and (2.19) differ. With the only exception of the
random variable being distributed uniformly, there always existgk = 0 and we define
the kth-order preferred phase

1 27 | )
Prefll @ = Arglx 01+ °j  j=0...k-1 (2.30)

which is not unique but takes dndifferent values and
1
prefl @ = Eargb((k)]. (2.31)

These definitions may seem unmotivated but let us remark that there are situations in
guantum optics where they can be utilized.
The role of the variance (2.23) is taken over by a less familiar concept of dispersion,

D®=1—|xD>. (2.32)
By analog, we define &th-order dispersion (cf the cage= 2 in [17])
1
DW= 2 [1—1x()?]. (2.33)
In the case of two independent random phase variadhlgs®, with the respective
probability densitiesP1(¢1), P2(¢2), the probability densities of their sum and difference
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DL = &1+ Oy (Pr(w) = P1(w) + P2(w)) in the sense of the quotient sRY2nZ are
given by the convolutions

6o+21
Pi(p) = / P1(p — @2) Pa(F¢2) dpy. (2.34)
o
The appropriate dispersions are connected by the relation (see [18] for the phase sum)
D(®1) = D(®1) + D(P2) — D(P1) D(P2). (2.35)
A similar relation holds for the second-order dispersions
DE(@.) = DF(0y) + D (®;) — 4D (91) DI (@) (2.36)

The property ofD(®;) = 1 (equivalently Pref(®;) undefined) impliesD(®.) = 1 and
Pref, (®+) undefined.

The familiar theorem of the theory of probability on the characteristic function of the
sum of independent random variables has its analogue for the characteristic sequences. It
holds that

X (s) = (explis®1)) = {explis By) explis (£2)])

= (exp(is®1)) (exp[is (£D2)]). (2.37)
According to the definition of the characteristic sequence (2.7) we obtain
X+(5) = xa(s) x2(s) xX-(s) = x1(s) x5 (s) (2.38)

where the asterisk denotes the complex conjugation.
A measure of uncertainty i® (¢) is provided by the entropy [19]:

Oo+2m
H=—["" Penlr@]dy. (2.39)
o
A measure of certainty iP(¢) is the Fisher information under the conditions described in
[20]:
Oo+2m 2
F= / |:dp(¢)] dy . (2.40)
o do P(p)

Here the limits of integration reflect the modification of this concept to the phase. The
Craner—Rao inequality, which assigns the meaning to the Fisher information on the one
hand, derives strong uncertainty principles in quantum mechanics and optics on the other
hand [21].

The situation in measures of quantum phase uncertainty makes possible or even
necessary a comparative study [22,16].

2.2. Application

In applications, we mostly encounter one- and two-peak distributions. We shall first consider
two distributions on the circle [15, 23].
(i) For the probability density

P(p) =5 explcosg — )] P efo.fo+2n) (2.41)
JTI()(K)
the characteristic sequence reads as
1) = 29 axnisp) (2.42)

Io(x)



4672 A Luks and V Pehova

where (k) is the modified Bessel function of order Here

Pref,® = 8 (2.43)
2
Db =1— [11(’()} . (2.44)
Io(x)
An alternative to the dispersion is provided by the Fisher information
K2 (k)
FF=—-]1- . 2.45
. 2[ hm] (2.45)
(i) For the probability density
1
Plo) =5 exp{x cos[Ay — B)]} B € [bo. 6o + ) (2.46)
77 Io(k)

the characteristic sequence reads as

Io(k) (2.47)
0 for s odd.

In this case, Prgf® is undefinedD® =1,

Ls/260) exp(isp) for s even
x(s) =

Prefll @ = p +7j j=01 (2.48)
and
1 I 2
pg = H(1_ [BWT) (2.49)
4 Io(k)
The Fisher information reads
I
Fy = 22 [1 - 2(”} . (2.50)
Io(k)

The fact, that the dispersion of any order is a measure of uncertainty and the Fisher
information is a measure of certainty can be seen from the proportion
F Do,
L ) 2.51
F| D[Z]q)” ( )
This comparison would fail if appropriate orders of dispersion were not taken into account.
For quantum motivated phase distributions we take those which played a role in the
discussions in [11,12].
(iii) For the probability density

Palipn) = - [1+ c0s2¢y) (252)
the characteristic sequence reads as

X5(8) = 850+ 382+ 385.2- (2.53)
Here, Pref (®;) is undefined,D(®;) = 1, and Préj?zoyj(cbl) = nj, j = 0,1, and
DP(@y) = 2.

(iv) For the probability density

1
P, (p2) = P [1 + cod(p, — )] (2.54)
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the characteristic sequence is
Xy (5) = 8,0+ 5 eXP(—i0)8, _1 + 3 €XP(i0); 1. (2.55)

In this case Pref(®,) =6, D(dp) = 3, Pref,i]j(cbz) are undefined, an®®(®,) = ;.

(v) Pegg and Vaccaro [11] proposed a quantum stajeand its phase distribution
P,(¢p2), related to the random phase varialde as being sensitive to the parameter
They also considered another quantum sigjeand its phase distributioRg (1), related to
the random phase variabde;. To find the distribution of the phase difference, we observe
that®; — &, = ®; + (—P,) and that—d, has the same distribution &@s with 6 replaced
by —6 (¢ — —0). They assumed that the random phase variablesb, were independent.
We can see by various arguments that the phase difference is distributed uniformly and does
not depend om. We use the property that the random phase varidhldas a symmetry
such that it is equal to the random phase variable— 7 in the distribution, which is
m-periodic,

Pg(p1+ ) = Pglep1) (2.56)
and that the random phase varialpled,)@ is distributed uniformly,

1
P, (=2 — ) + P, (—@2) = —. (2.57)
T
Using these properties and the convolution formula (2.34), we obtain that
1
P_(¢) = o (2.58)
T

From relations (2.35) and (2.36), we obtain the dispersion and the second-order
dispersion of the phase difference

D(d1 — dy) =1 (2.59)
and
DP(®; — dp) =1 (2.60)

respectively. These values are appropriate to the uniform distribution, but are not
characteristic of it, because the dispersion unity has been obtained in case (iii) and for
the second-order dispersion a quarter has been obtained in case (iv).

Substituting (2.53) and (2.55) into (2.38), we obtain that

X_(S) = 85,0~ (261)
Let us note that this result can be obtained more generally for a pair of independent random
phase variables®;, ®, of the properties (2.56) and (2.57), respectively. These properties
can be expressed in the language of characteristic sequengggsas= 0 for s odd and
Xy (s) = 85,0 for s even. The random phase varialble®,)® has the characteristic sequence
[XxP )] = x3(2s) = 82,0 = 8,0 in accordance with (2.57).

3. A pair of correlated random phase variables

3.1. Theory

The mathematical theory of probability treats a two-dimensional random vektQrX,)
as ac-homomorphism of(Q2, F) into (R?, B(R?)), where B(R?) is the Borelo-field
on R?. As was said above, multiple-valued measurable mappings are not usual in this
theory and we are inclined to define a two-dimensional random phase \€etod,) as
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a measurable mapping @f2, ) into ((R/2rZ)% B((R/2rZ)?). Fortunately, we may
define four random variable¥;(w), Y1(w), X2(w), Yo(w) by the equations

X; () +1Y;(w) = exp[id; (w)] i=12wecq. (3.1)

For (p1, ¢2) € (R/2n7Z)?, the mapping(exp(ip1), explip,)) is an injection (a one-to-one
function) of (R/27Z)? into C2. Its range is the unit torug?. It is worth noting that quite
similar equations

Xi(w) +1Yj(w) = expliZ;(w)] j=1L2,weQ (3.2)

where Z; (w) are usual random variables, may serve definitions of distributions on the unit
torus72. To this aim it is sufficient to pickZ,(w), Z»(w) obeying a (normal) Gaussian law.
Now, these random variables are formally multiple valued according to their role in relations
(3.2). This will lead to summations in the formulae for the new probability densities and
simple expressions cannot always be expected from this technique.

The study of two random phase variables seems to necessitate two variables instead
of the four and the torus is mapped again into the plane. The simplest approach
recently used in the literature on quantum optics [10] consists of considering random
phase variablesbg, (w), ®24,,(w) and their joint probability density distributed on the
square Q = [6p1, 601 + 27) X [0z, 602 + 27). Nevertheless, the torus admits various
‘charts’ even if polar angles are used solely. Some of them are mentioned below, but
we adhere to an analysis of the simple chart Arg Arg,  leading to the relation
gy, (0) = Arg(,oj{exp[iCDj(w)]}, j =1, 2. For simplicity, let us call the s&RrZ)? a lattice
and denote it byl.. Let us note thatR/27Z)? = R?/L. Assuming that the random phase
variables®1y, (w), P24, (w) have a joint probability densitys,,q.,(¢1, ¢2), we observe that
Pays60, (01, 92) = 0 for (¢1, ¢2) outside Q. In this paper any doublys2-periodic function
will be called L-periodic. TheL-periodic continuation of the probability density from
onto the wholeR? is useful and will be denoted b (¢1, ¢2).

The L-periodicity may motivate the definition of a characteristic double sequence. We
introduce this concept as

X (51, 52) = (expli(s1 ®1 + 52@2)]) (s1, 82) € Z°. (3.3)

In particular, x (0, 0) = 1. Supposing that the random phase vectbi(w), ®2(w)) has
an absolutely continuous distribution with the probability dengttiyp1, ¢») and choosing
fo1, B02 € R, we can express the characteristic double sequence as

Oo1+21 Oo2+21 .
x (51, 82) = / / expli(sip1 + s202)] P (p1, ¢2) dp1 dgs. (3.4)

o1 o2

The inverse relation to (3.4) reads
1 [o¢] oo
Py = 4a Z ; expl—i(s101 + s2¢2)] x (51, 52). (35)
1=—0Q0 §=—0Q
Studying a pair of ordinary random variables, we may use the characteristic function
X6o1600 (515 52) = (EXP[i(s1P 1y, + 52P24y,)]) (s1,52) € R?. (3.6)
It is related to the characteristic double sequence by the interpolation formula

Xoobo(51.52) = D > x (s, s5) expli(sy — s1)(Bor + 7) + (52 — 55) (Boz + 7))}

’_ r_
§1=—00 §,=—00

xsinc[2e (s1 — sy)]sinc[2r (s2 — 55)]. (3.7)
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The marginal characteristic functions for single random phase varidilgsand @y, are
given by the formulae

X@o;[(s) = X@o]ﬂoz(sv O) Xﬁoz(s) = X@gleoz(oa S) s € R (38)
Let us remember that the mixed second momendbgf, and &, is derived as

2
_7)(901902(‘911 52) (3.9)
85‘135‘2 5s1=0,5,=0

and is used in the computation of the covariance
COV(DP1g,,, Pony,) = (ADP1g, ADP2g,) = (P16, Pogy) — (Prgy) (Psy)-  (3.10)

This quantity has been studied in quantum optics [24].

Because the phase-sum and phase-difference variables have been studied intensively
[10, 25], we note that the mathematical approach to modelling the physical quantities would
require the use of a measurable mappingf F) into (R?/L’, B(R?/L’)) with

L' ={@2n (k1 + k), 210 (ky — k2)); k1, ko € Z}
— [2rk,, 2tk )i ke k€ 2Z ork, k. €27 +1}. (3.11)

Here Z = {2k;k € Z} and Z + 1 = {2k + 1,k € Z}. This pair of multiple-valued
random variables does not have Arperiodic probability density but an’-periodic one.

This manifests itself in the characteristic double sequence of this pair of multiple-valued
random variables, which is given by the formula

(D199, P2oy,) =

x;rf(er, S_)=x(sp +s5_,5. —5_) fors,,s_e€eZors,,s_eZ+ % (3.12)
whereZ + % ={k+ %; k € Z}, and which provides th&’-periodic probability density as

: 1 . ,
Pl g) =55 D Y exPi(sor +5-9)lx; (54,5)
sy€Ls_€L

1 . ,
Tar2 Z Z expl—i(s+o+ +s-9)]x (54, 5-). (3.13)

sy€Z+3 s_eZ+]
Because random phase variables cannot.bperiodic, previous literature treats the
problem of the recovery of the-periodicity with a procedure. We reapproach this problem
via characteristic double sequence. Quite simply

X+—(S4,5-) = X_/,'__(S_A,_, s_) Sy,S_ € 7. (3.14)
Let us emphasize that the variables s_ in (3.14) are restricted to the domain of the
definition in (3.3).

Returning to formula (3.12), let us remark that the marginal characteristic functions
x+(s) and x_(s) for single random phase variablgs, and ®_, respectively, can be
obtained as usual by substitutien = 0 € Z ands, = 0 € Z, respectively. So the
situation applies with,, s_ € Z and

X+(6) =x-(,00  x-()=x,_05)  se (3.15)
By comparison with (3.14) it is obvious that tHe-periodic probability density provides
2m-periodic marginals directly as well as after an intermediate computation @f-fregiodic
probability density in the formalism of characteristic (double and simple) sequences.
If the random phase variableB;, ®, have a joint probability density’ (¢1, ¢2), we
obtain theL-periodic probability density for the phase sum and phase difference:

1 & . ,
Pl =45 D, D ePHiGgs +50)lx(51,5). (3.16)

S4=—00S5_=—00
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Using (3.4), (3.12), and (3.14), we may rewrite (3.16) as
P (¢4, 9-) = // (g1 + 92 — 9)8(p1 — 92 — ) P91, ¢2) A1 dopy (3.17)
0

wheres () is the 2r-periodic Dirac delta function, and(¢1)8(¢») is the L-periodic Dirac
delta function. Using the definition

o]

Sp)= ) 8(p—2mk) (3.18)

k=—00

we obtain that thd.-periodic probability density restricted to a squale_ is given by the
formulae

1 o
Py (py,0-) = é |:P901.,902 ( 2 ’ 2
o+ + o Py — Q-
+P901,902< Jr2 -7, Jr2 _77):|
(3.19)
for o > 6oy + 7, lp_ — 00— — 7| < o1 — O — 7,
1 o+ to- o —@-
P+7(§0+9 (p,) = é |:P901,902 ( i 2 s * 2
+ @ —@_
Y R i e A P (3.20)
2 2
foro_ > 00+, loy — b0 — 7| < @ — b —,
1 o+ to- o —@-
P+7(§0+9 (p,) = é |:P901,902 ( i 2 s * 2
+ @ —@_
=+ P901_902 <(ﬂ+ > L4 + 7, L > ¢ +7T):| (321)
for(ﬂ+<90++7[,|§0_—00_—7T|<|(ﬂ+—90+—7[|,
1 o+t o- 9 — @
P+7((p+9 (p*) = é |:P001,902< * 2 3 L 2
+ @ —@_
+ Poos.bo Py + 7, pr=® -7 (3.22)
2 2
for o_ < 6o + 7, |9y — 6oy — | < |9— — 6p— — 7|. Here
O+- =[O0+, Oor + 2) X [6o-, Oo— + 27) (3.23)
with
Oo+ = (Bor + ) £ (Bo2 + ) — 7 = o1 & (B2 + ). (3.24)

From (3.19)—(3.22) it is obvious that two points @f are cast into a single one @ ...

After a casting (surjection) procedure, the formyg, £ ®og,) = (D1g,,) + (P2gy,)
applies no more. A loophole in notation may obscure understanding of a failure of the twin
formulae

COV(P1gy,, Pogy,) = £5 [Var(Pugy, = Pagyy) — Var(@g,,) — var(Pog,,) ] - (3.25)

Recalling the results of Barnett and Pegg [10], we encounter the situation, where the left-
hand side of (3.25) depends on a parametésee subsection 3.2), but the right-hand side
for the phase difference does not depend-on
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The dependence between the random phase varidhlgs @4, can be assessed by
the normalized covariance (the correlation coefficient)

CoOV(D 1y, P2gy,)
Vvar( @1, )var(®z,,)

which can assume values of both signs in the intervdl, [L]. Actually this characteristic
measures the dependence between the multiple-valued random phase vdriakigsbut

with a flavour of ambiguity. We assume that a specific concept for the correlation between
®; and &, should be introduced. To this end we apply the group correlation coefficient
[26] between random vectotX 1, Y1) and (X, Y»2) given in (3.1), using a complexification.
This quantity is given as

cor(D1g,,, Pogy,) = (3.26)

2 W]
_ I D LA N 3.27
Pexpidy),explids) V12l Vaal ( )
where|A| means the determinant of a matédx and the matrix\y
Vi1 Vi
W = 3.28
(V21 sz) (3.28)
with
_ [ cowe®, e ) var(e®) .
ij - < Var(e—i(bj) COV(ei(Dj, e—i(bj) J = 17 2 (329)
_( cowE®,e®2)  covwe®, €%2)
Viz = (cov(ei‘bl, ei%2)  coye 1, @%2) (3.30)
Va1 = Vi, (3.31)

The complexification is made without introducing complex conjugation in var ((2.23)) and
cov ((3.10)). Mativated by the fact that the coefficient (3.27) cannot take on negative values
and by the observation that the diagonal elements on the right-hand side of (3.29)

cove®, &%) = (A¥ Ae”'®) = D(®)) j=12 (3.32)
we introduce the codispersions of the random phase varid@hle®, and of &, —®,,
cod( @, ®,) = cov(e®, e'%2) cod(®;, —P,) = cov(e®:, €%2). (3.33)

Let us observe that: (i) we sought for the sigh%, but we have obtained complex units
because the quantities (3.33) can be imaginary; (ii) we expected only a ‘covariandg’ of
and &, but we have also obtained the codispersiombgfand —&,. With respect to point

(i) we remark that the codispersion can be analysed using the familiar polar decomposition
of complex numbers and the squared modulus can be compared with (3.27). As to (ii)
we know that the relation between the complex random variable§®xpand exg—i®,)

is nonlinear, i.e. exp-i®,) = [exp(i®,)]~. In our opinion, no analogue of the twin
formulae (3.25) giving a unified measure of correlation in terms of the phase sum and the
phase difference is yet known. Exploiting this observation for single phases, we invent also
the characteristics

cod(®;, —®;) = cowe®, &®) = vare®) ji=12 (3.34)

To take into account that the random variablés, Y1), (X2, Y») have the distribution
concentrated on the tord¥, we consider the conditional distribution of the random phase
variable ®; given a valueg, of the random phase variable, and that of®, given a
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valueg; of ®1. WheneverP (¢,) # 0, P(¢1) # 0, we introduce the conditional probability
densities

P (g1, 2) Ppalgy) = P (@1, 2)
P(¢2) 2P Py

respectively. Applying relation (2.6), we obtain the conditional characteristic sequences
x1(s|@2), x2(s|e1), but definition (2.5) is modified to the forms

x1(slg2) = E(explisP1)|p2) x2(slp1) = E(explisP2)|p1) (3.36)
where E means the conditional expectation,

P(p1lp2) = (3.35)

Oo1+21
E(explis®1)lp2) = / explispy) P(¢1/¢2) dor

o1

Bo2+2m
Eexpis@ale) = [ explisgs) Pgalon dez (337)
02

As a further characteristic of correlation, we may recommend the conditional preferred
phases préfb;|p,), pref(®,|p1) provided that these quantities are defined for @l
¢1, respectively. With the conditional preferred phases we associated connected lines
li2 and Iy on the torus7T? consisting of the pointgexp[pref®1|¢,)], explip,)) for
all g2 € [6o2, 002 + 27) and (explipy), exp[pref®z|p1)]) for all g1 € [Oo1, Oo1 + 27),
respectively. In a situation, to chart the connected lipeon the torusT?, we choose a
reference point with the coordinatesy, = Pref,,(®1]¢2 = 6o2), @25, = 602 IN R2. For
©2,, 7 Oo2, We pick up the values from preb4|¢»), which will form an image of the line
l12 in R? going through the reference point. This procedure is known in optical literature as
the phase unwrapping. An image of the liag may be obtained by selecting the reference
point with the coordinategiy, = 6o1, 20, = Pref,,(®2lp1 = 6o1) in R? and continuing
the curve inR? with suitable points from pré®;|¢;). The situations of better or worse
fit between the curveg), andly; may be interpreted as a stronger or weaker correlation
between the random phase variabfesand ®,. A prospective use can also be associated
with the conditionalkth-order preferred phases.

Let us derive a decomposition of the covariance of random variablesideyp
exp(—id®q). It holds that

cow@®, ') = (1) — (™1)(e7'™) = (1) — Eo(E1(€™|D2) Er(e™' D7)
+Eo(E1(€%|d2) E1(€7 | d2)) — (€%1)(e7'") = Ea(E1(1]®2)
—E1 (€% @) E1(€7"@2)) + Eo(E1(€|®2) E1(67¥1 D))
—E2E1(€%1|®2) E2E1 (€77 ®2) = Ep cova(€¥t, e ¥1|dy)
+COV(E1 (€| D), Ex(e' " D2).

We have established that

cov(€®, e7'%1) = E, covy (€%, €% |Dy) 4 covu(E1 (€% Dy), E1(e7%|dy)). (3.38)

Let us remember that the conditional expectatiofige®t|p,), E(e'®t|p,) and the
conditional covariance c@e®:, e'®1|¢,) are understandable as related to the conditional
probability densityP (¢1]¢2) defined in (3.35). Of course, these quantities are functions
of the valueg, of the random phase variabte, and when they are measurable functions
we may substitute fop, the appropriate random phase varialilg. In this case we use
the subscript notatioE,(€®t|®,), E1(e7'®1|d,), and coy(€®:, e '*1|d,) for the random
guantities resulting from this substitution. Subscript 2 is used for the expectation pf cov
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and for the expectations and covariancesEgte®:|®,), E1(e”'®1|d,). A dispersion and
the conditional dispersion can be introduced in (3.38) according to formulae (3.32) and to

D1(®1]®) = covy (€91, e71|dy) . (3.39)
Because
COVo(E1(€%|®2), E1(e7'%4 D7)
= van (E1(cos®,|®;)) + van(E1(sin®;|®;)) > 0 (3.40)
it holds that
E2D1(D1|®2) < D(P1). (3.41)

The difference (3.40) between the sides of (3.41) is a measure of uncertainty for the
prediction of the values ofp; based on the knowledge ab,. Similar considerations

are well known for the entropy of the distribution &, which enters the right-hand side

of an analogue of (3.41), whereas the conditional entropy enters the left-hand side. The
right-hand side as reduced by the conditional entropy is called the trans-information [14].

3.2. Application

The technique motivated by the relation (3.2) can be formulated, without introd4¢ing,
in terms of the formula

oo oo
P(pr.92) = Y Y Prel(pr— 21k, 92— 2kp) (3.42)

k1:—00 kz:—OO
where Pgz2(z1, z2) IS @ usual probability density, e.g.,
1

2710102/ 1 — p?

Pra(z1,22) =

1 (z1—m1)? (z2—m2)?  2p(z1 — m1)(z2 — mp)
Xexp{_2<1—p2)[ o7 2 0102 ”

(3.43)

witho; >0, =1,2,|p| <1,m; eR, j =1,2. According to a sampling theorem [14]
we observe that an equivalent expression consists of (3.5) with

X (51, 82) = eXp[i(slml + somyp) — %(sfolz + sfozz + 2.5‘1S2010’2,0)] . (344

For p = 0 the probability density (3.43) is a product of two probability densities and this
reappears in (3.42) as the independence of the random phase va@atles O, (w).

The quantum derived phase distribution was considered in an analysis of the two-mode
squeezed vacuum state [10]. Here, theeriodic joint probability density of random phase
variables is

1

1
472 cosh2r) — cosg1 + @2 — £) sinh(2r)
wherer and ¢ are parameters of squeezing> 0 and¢ is a phase. The characteristic
double sequence (3.3) reads as
X (51, 52) = 8,5, EXPiEs7) (tanhr)* (s1,52) € Z2. (3.46)

Considering thel’-periodic probability density of the phase sum and the phase difference
®,, d_, we resort to the characteristic double sequence according to (3.12),

P(p1, ¢2) = (3.45)

X (54, 5-) = 825 oXp(iEsy) (tanhr)* forsi,s_ € Zorsy,s- € Z+ 3. (3.47)
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Adopting theL-periodic probability density, we merely ignose, s_ from Z+% and (3.14)
holds. From (3.16) we obtain that

1
472 cosh2r) — coSp,. — &) sinh(2r)’
Trying to apply the specific concept of the group correlation coefficient, we use the matrix
(3.28) with

10 .
VJJ:<0 1> ]:1,2

Py (pi,0-) = (3.48)

_ 0 éf tanhr ot
VlZ = (e_is tanhr 0 ) V21 = V12’ (349)
On substituting into (3.27), we obtain that
1

2
Pexplidy). explidy) = L — W- (3.50)

Analysing the calculations, we may rewrite (3.50) as
pgxp(idn),exp(i:bz) =1—[1—|cod®y, —dp) [’ (3.51)
Let us note that the marginal phase probability densities are uniform, i.e.

1
P1(p1) = Pag2) = > (3.52)
JT
and the appropriate dispersions are maximum
D(®1) = D(®y) = 1. (3.53)
The codispersions (3.33) are
cod(®q, &) =0 cod®;, —d,) = exp(i§) tanhr. (3.54)

These values have a possible interpretation that the random phase vadiglaled @, are
uncorrelated, but the random phase varialibgsand —®, are more correlated for greater
tanhr or simply for greaterr. The phase parametércould be helpful for choosing the
double windowQ. According to (3.35) the conditional probability densities are

1 1
P =P == : :
(prlg2) = P@2lo1) = 5 - or) — costn + v — &) Sinh2r) (3.55)

The conditional characteristic sequences (3.36) become

X1(slg2) = explis (€ — ¢)](tanhr)"” (3.56)

Xx2(slg1) = explis(§ — pv)](tanhr)®!. (3.57)
The conditional preferred phases follow from (3.54) and (3.55),

& — g2 € pref(Pq|g2) & — g1 € pref(dz]py). (3.58)

Here the graphs of these dependences are determined as

lz = {(€%7), €); g2 € [6oz, oz + 27)}

Ip = {(€7, €57); 01 € [fo1, Oor + 27)) (3.59)
providing the same curve (a helix on a torus, which for a specific closedness of the torus is
a topological circle). This identity does not ensure the minimum conditional dispersions,

D(®@1|p2) = D(P2|e1) = (3.60)

1
costr’
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Hence,

ErDi(®1|P2) = E1Dy(P2|Py) = (3.61)

1
osH r

and in relation (3.41) the equality is not attained.

4. Conclusion

In this paper we have treated the phase as a multiple-valued random variable with and
without the formal device of collecting together all assumed values into a single set. We have
illustrated the consequences of representing these phase values as points on unit circle. The
ordinary treatment of the phase in a suitable interval has been interpreted as a mapping of the
unit circle into the real line. The expectation and the variance of the ordinary phase has been
exposed together with the preferred phase and the dispersion connected to the unit circle.
The characteristic sequence of the random phase variable, which comprises only ‘resonant’
values from the characteristic functions for the ordinary phase, has been introduced. Starting
from this concept, we have defined more general concept ofttiherder preferred phase

and the appropriate dispersion. A possible use in the quantum and semiclassical optics is
conceived. The same conceptual scheme has been adopted in the case of a pair of random
phase variables leading to a representation on the unit torus in four-dimensional space. Here
the gap between the dimensionality two of the torus and that of the Euclidean space gets
wider and proposals for measures of stochastic dependence (statistical correlation) encounter
difficulties. Nevertheless, a choice of a suitable mapping in this two-dimensional case is
also a challenge. In this situation we have adapted the group correlation coefficient for the
analysis of phase properties. We have reapproached the problem of the phase sum and phase
difference and characterized exactly the peculiar properties of this pair of multiple-valued
random variables, which arise in the course of the transformation. We have translated these
distinctions between lattices into the language of characteristic double sequences and found
a common basis for ‘casting’ procedures known from the literature in the deliberate neglect
of the terms of the double sequence indexed with half-odd subscripts. We have presented
an explicit form of a possible imposition of the product multivaluedness to the phase sum
and the phase difference. As possible measures of correlation, the codispersions of random
phase variables have been introduced possessing unusual properties. The codispersions
may be imaginary and their definitions respect the phase conjugation. We have pointed out
the usefulness of the conditional phase distributions for expressing the dependences once
the conditional preferred phases are plotted on the surface of the torus and the averaged
conditional dispersions are assessed. We have mentioned an information-based measure.
As an application, we have considered the situation, where two-mode squeezed vacuum
guantum phases are obtained using an ideal down-converter. Building on the results of
Barnett and Pegg, we have illustrated our proposals and concepts.
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Appendix A. Physical quantities: random variables and operators

Modern physics is based on quantum theory. Although our paper is intended as a
contribution to a very special problem of modern physics, it hardly contains concepts such
as states and operators, but it indicates the use of some distributions of ‘quantum origin’.
Let us begin with the concept of a random variable, which seems to be very
mathematical, but it may characterize a physical quantity. For instance, with a position
coordinate, the notatiofiX) may be connected with a classical model dag may occur
in a quantum model of reality. The expectation value and moments of a random variable
X (w) are defined as

(x*) = f [X (@)]* d Prolw) (A1)
Q

where Prob is a probability measure onocafield F of subsets of2, and Q is the

set of elementary random events. From the physical viewpoint the formula (Al) is too
much connected with the Kolmogorov axioms of the probability theory although a simple
substitutionx = X (w) leads to an accepted formula

(x*) = fR x* dux (x) (A2)
where the Borel measure

px(E) = Prob(X (E)) (A3)
with E € B(R). The variance of the random variab¥gw) is

var X = ((AX)?) (A4)
whereAX = X — (X), and it holds that

var X = (X% — (X)2. (A5)

Modern physics does not adopt the term ‘random variable’, but it still associates the
statistical notions with physical quantities, which are now being represented by operators.
In non-commutative measure theory, which is being developed because of the desire to
investigate the mathematical foundations of quantum mechanics (see [27]), one replaces the
notion of a Boolean algebra by the notion of an orthomodular lattice. In contrast, here we
use the representation of a Boolean algebraic structure witkfiald of sets as usual in
probability theory. In the classical model the position coordinate is the random variable
X (w) and in quantum optics the position coordinate is represented by the operaide
will denote operators using the caret. The expectation value and moments of this operator
are defined as

(#) = Tr{p") (A6)

where ¢ is the state operator. In the quantum theory of measurement, a measure on the
Borel o-field B(R) is introduced and by analogue with (A3) we denote it similarly,

1z (E) = Tr{pAz (E)} (A7)

where A;(E) is a projection-valued measure with the property tha(R) = 1. Upon
substitutingu; for uy into (A2) and using the spectral decompositions

/ xFA;(dx) = zF (A8)
R
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and the definition (A6), we obtain the relation
(XH) = (). (A9)

This is why we have generalized the use of the left-hand side of (A6) and that of random
variables to the whole of this paper. The variance of the opefater

var £ = ((A%)?) (A10)
where A% = £ — (£)1, and equivalently
vart = (£2) — (%)% (A11)

A similar replacement of the random variables by operators can be performed in the
connection with the notation co¥ 1, X,) for the covariance and (X1|x,), E1(X1|X>) for
the expectation values, which in the latter case itself is a random variable, i, cty,
E(x1]x2), and E1(X1]x2). The expectation valu&;(x;|x») is defined only in case that the
operatorst;, X, commute, i.e. the physical quantities are compatible, and Ehéfy |x,) is
an operator.

The preceding scheme of reinterpretation of random variables as operators can be applied
in simple cases, e.g., the left-hand sides of the formulae (2.19)—(2.21), if we adopt a suitable
phase identity resolution. Unfortunately, the Hilbert space of the harmonic oscillator does
not admit a well behaved phase identity resolution and there exist two contrasted solutions
of the phase operator problem when this Hilbert space is enlarged [28] or diminished [7, 29].

We may start the procedure of enlargement with a continuum of rotation angle states
lp)e, ¢ € R/277Z, of the axial rotator. Formally a simple Fourier decomposition yields
number states,

In)e exp(—ing)|p)e do nez. (A12)

1

V2 R/277Z
When we identify the number stat¢s)e, n > 0, with number stateg:) of the harmonic
oscillator, we reinterpret the statgs) as phase states of the harmonic oscillator. We may
associate any study of the physical system with states, which do not comprise components
with negative energy of the harmonic oscillator. However, these components enter the
expansion of the phase states, which may represent a problem for their physical acceptance.
Whereas the distinction between the probability densifigéy) (cf (2.5)) is concrete, the
distinction between measures, (E), E € B(R), is abstract. In analog to (A7), a similar
family of measures of quantum origin can be obtained,

W (E) = Tr{pAs, (E)) (A13)

where A@OO(E) is in fact independent ofly. This property can be illustrated by the
operator density N¢A¢00(¢) which vanishes outside the intervado[6y + 27), but
whenever it is non-zero ap;, > (in other words, for6y = 6p1, 60 = 6p2, respectively,
@; € [6o), 60; + 27), j =1, 2), andy1 = ¢, modulo 2r, the following relation holds:

d . d .

@A‘%m ((p)|<p=<p1 = @A(ﬁgoz ((p)|¢=<p2- (A14)
Let us remember the formula (2.27) in the form

Pref,® = Arg,, (exp(i®)). (A15)

The expectation value on the right-hand side in (A15) is defined as

(exp(i®)) = [ exp[i® (w)] d Probw). (A16)
Q
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With the aid of the substitutiop = @ (w), which is not so usual, becauges R/27Z, we
arrive at

(expie) = [ expie) duce). (A17)

R/27Z

Let us rewrite (2.32) in the form
D® = 1— |(expid))|?. (A18)

Although the notations Pref and have been introduced in this paper, we would like to use
the same principle as with the usual notation and replace the random phase variable with
an operatorp. This means, that using the comfort of the enlarged Hilbert space, we want
to do away with the subscrigh. We will show that this is not possible. Only supposing

for a while the existence of the multiple-valued operator, we may rewrite formally (A15)
as

Pref,¢ = Argy (exp(ig)). (A19)

This situation does not oblige us to complete the definition of the opepaabonce because
obviously

expig) = explip) (A20)
where€xp(ip) is a ladder operator in the enlarged Hilbert space, and
(EXpip)) = Tr{p explip)}. (A21)

Before we approach the possibility of and constraints on the multiple-valued phase
operator, we remember that the following equality between the multiple-valued random
phase variables holds:

Pur(w) = P, (w) + 2k k eZ. (A22)

In other words, the addition of an indeterminate multiple af ® any ‘well behaved’
random phase variable provides just the multiple-valued random phase variable. As the
matrix elements of the multiple-valued phase operator

@Homult = @00 + 27Tkie (A23)

where 1 is the identity operator in the enlarged Hilbert space, dependy,omodulo
27, relation (A23) fails to define the operatdr,, .. Nevertheless, we may imagine a
multiple-valued measurement with the numerical reguét R/27Z independent o, and
an immediately following state reduction to the pure statec(¢|, again independent @.
Also the appropriate projection-valued measﬁrﬂE), E € B(R/2rxZ), may be provided
with a subscriptp. Applying the previous convention, we generalize relations (3.33) as

cod(@1, £¢2) = cov(explipr), eXP(FiPz)). (A24)
Similarly, formula (3.58) can be rewritten with p(éf|¢,), pref(gz|e1).

References

[1] Glaube R J 1963Phys. Rev. Lettl0 84

[2] Glaube R J 1963Phys. Rev1302529

[3] Glaube R J 1963Phys. Rev1312766

[4] Sudarsha E G C1963Phys. Rev. Lettl0 277

[5] Susskind L and Glogower J 1962hysicsl 49

[6] Carruthers P and Nieto M 1968ev. Mod. Phys40 411
[7] Pegg D T and BarnetS M 1988Europhys. Lett6 483



(8]

El
(20]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
[21]
(22]
(23]
(24]
[25]
(26]
[27]
(28]
[29]

The random phase variable and quantum optical phase 4685

1993 Phys. Scr(Special issueY48 1-144

Royer A 1996Phys. RevA 53 70

Barnet S M and Pegg D T 199@hys. RevA 42 6713

Peg D T and Vaccar J A 1995Phys. RevA 51 859

Luis A and Sinchez-Sat L L 1995 Phys. RevA 51 861

Kolmogoroff A 1950Foundations of the Theory of ProbabilifiNew York: Chelsea)
Frieden B R 1991Probability, Statistical Optics, and Data Testi2md edn (Berlin: Springer)
Rao R C 1973Linear Statistical Inference and its Applicatioidew York: Wiley) p 175
Luk$ A and Pé&nova V 1994Quantum Opt6 125

Vaccap J A and Orlowski A 1995°hys. RevA 51 4172

Opatrry T 1994J. Phys. A: Math. Ger27 7201

Bialynicki-Birula | and Mycielski J 1978%Commun. Math. Phy<l4 129

Frieden B R 1990Phys. RevA 41 4265

Frieden B R 1992Phys. LettA 169123

Bialynicki-Birula I, Freyberger M and Schleich W 19%3ys. ScrT48 113

Luks A and Pé&nova V 1991Czech. J. Physt1 1205

Tan& R, Gantsog Ts and Zawodny R 19Quantum Opt3 221

Luis A and Sinchez-Sat L L 1993 Phys. RevA 48 4702

Andél J 1978Mathematical StatisticéPrague: Technical Literature Publishers) (in Czech) p 307
Varadaraja V S 1985Geometry of Quantum TheofBerlin: Springer)

Luks A, Pdinova V and Kepelka J 1994hys. RevA 50 818

Luk$S A and Pénova V 1993Quantum Opt5 287



